Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.527
Filtrar
1.
BMC Geriatr ; 24(1): 403, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714957

RESUMO

BACKGROUND: Evidence on the effects of plantar intrinsic foot muscle exercise in older adults remains limited. This study aimed to evaluate the effect of an integrated intrinsic foot muscle exercise program with a novel three-dimensional printing foot core training device on balance and body composition in community-dwelling adults aged 60 and above. METHODS: A total of 40 participants aged ≥ 60 years were enrolled in this quasi-experimental, single-group, pretest-posttest design; participants were categorized into two groups, those with balance impairment and those without balance impairment. The participants performed a 4-week integrated intrinsic foot muscle exercise program with a three-dimensional printing foot core training device. The short physical performance battery (SPPB) and timed up and go test were employed to evaluate mobility and balance. A foot pressure distribution analysis was conducted to assess static postural control. The appendicular skeletal muscle mass index and fat mass were measured by a segmental body composition monitor with bioelectrical impedance analysis. The Wilcoxon signed rank test was used to determine the difference before and after the exercise program. RESULTS: Among the 40 enrolled participants (median age, 78.0 years; female, 80.0%; balance-impaired group, 27.5%), the 95% confidence ellipse area of the center of pressure under the eyes-closed condition was significantly decreased (median pretest: 217.3, interquartile range: 238.4; median posttest: 131.7, interquartile range: 199.5; P = 0.001) after the exercise. Female participants without balance impairment demonstrated a significant increase in appendicular skeletal muscle mass index and a decrease in fat mass. Participants in the balance-impaired group exhibited a significant increase in SPPB. CONCLUSIONS: Integrated intrinsic foot muscle exercise with a three-dimensional printing foot core training device may improve balance and body composition in adults aged 60 and above. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT05750888 (retrospectively registered 02/03/2023).


Assuntos
Composição Corporal , , Vida Independente , Músculo Esquelético , Equilíbrio Postural , Humanos , Feminino , Idoso , Equilíbrio Postural/fisiologia , Masculino , Composição Corporal/fisiologia , Pé/fisiologia , Músculo Esquelético/fisiologia , Pessoa de Meia-Idade , Terapia por Exercício/métodos , Terapia por Exercício/instrumentação , Idoso de 80 Anos ou mais
2.
J Med Internet Res ; 26: e44948, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718385

RESUMO

BACKGROUND: Monitoring of gait patterns by insoles is popular to study behavior and activity in the daily life of people and throughout the rehabilitation process of patients. Live data analyses may improve personalized prevention and treatment regimens, as well as rehabilitation. The M-shaped plantar pressure curve during the stance phase is mainly defined by the loading and unloading slope, 2 maxima, 1 minimum, as well as the force during defined periods. When monitoring gait continuously, walking uphill or downhill could affect this curve in characteristic ways. OBJECTIVE: For walking on a slope, typical changes in the stance phase curve measured by insoles were hypothesized. METHODS: In total, 40 healthy participants of both sexes were fitted with individually calibrated insoles with 16 pressure sensors each and a recording frequency of 100 Hz. Participants walked on a treadmill at 4 km/h for 1 minute in each of the following slopes: -20%, -15%, -10%, -5%, 0%, 5%, 10%, 15%, and 20%. Raw data were exported for analyses. A custom-developed data platform was used for data processing and parameter calculation, including step detection, data transformation, and normalization for time by natural cubic spline interpolation and force (proportion of body weight). To identify the time-axis positions of the desired maxima and minimum among the available extremum candidates in each step, a Gaussian filter was applied (σ=3, kernel size 7). Inconclusive extremum candidates were further processed by screening for time plausibility, maximum or minimum pool filtering, and monotony. Several parameters that describe the curve trajectory were computed for each step. The normal distribution of data was tested by the Kolmogorov-Smirnov and Shapiro-Wilk tests. RESULTS: Data were normally distributed. An analysis of variance with the gait parameters as dependent and slope as independent variables revealed significant changes related to the slope for the following parameters of the stance phase curve: the mean force during loading and unloading, the 2 maxima and the minimum, as well as the loading and unloading slope (all P<.001). A simultaneous increase in the loading slope, the first maximum and the mean loading force combined with a decrease in the mean unloading force, the second maximum, and the unloading slope is characteristic for downhill walking. The opposite represents uphill walking. The minimum had its peak at horizontal walking and values dropped when walking uphill and downhill alike. It is therefore not a suitable parameter to distinguish between uphill and downhill walking. CONCLUSIONS: While patient-related factors, such as anthropometrics, injury, or disease shape the stance phase curve on a longer-term scale, walking on slopes leads to temporary and characteristic short-term changes in the curve trajectory.


Assuntos
, Marcha , Pressão , Caminhada , Humanos , Masculino , Feminino , Estudos Transversais , Caminhada/fisiologia , Adulto , Pé/fisiologia , Marcha/fisiologia , Adulto Jovem , Fenômenos Biomecânicos
3.
Sci Rep ; 14(1): 10051, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698031

RESUMO

Prevalence of impaired foot function among baseball players with and without a disabled throwing shoulder/elbow was investigated. The study included 138 male players. Players who had previously complained of shoulder/elbow pain during throwing motion were defined as the players with a history, and those who experienced shoulder/elbow pain during the examination were defined as having the injury. Foot function was evaluated by foot "rock paper scissors" movements and floating toes. Their prevalence was assessed and the relationships between players with and without the injuries were statistically analyzed. The prevalence of players with a history and injury was 27% and 7%, respectively. The prevalence of impaired foot function on the non-throwing side among players with injury was significantly higher than those without (60% vs. 28%, P < 0.001) and higher tendency on the throwing side than those without (60% vs. 32%). Regarding floating toes, players with a relevant history showed a significantly higher prevalence on the throwing side than those without (49% vs 28%, P < 0.001) and higher tendency on the non-throwing side than those without (49% vs 32%). Players with disabled throwing shoulder/elbow have a significantly higher prevalence of impaired foot function and floating toes than players without it.


Assuntos
Beisebol , , Humanos , Masculino , Beisebol/lesões , Estudos de Casos e Controles , Prevalência , Pé/fisiopatologia , Pé/fisiologia , Adulto Jovem , Adulto , Ombro/fisiopatologia , Pessoas com Deficiência
4.
J Colloid Interface Sci ; 668: 142-153, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669992

RESUMO

Based on real-time detection of plantar pressure, gait recognition could provide important health information for rehabilitation administration, fatigue prevention, and sports training assessment. So far, such researches are extremely limited due to lacking of reliable, stable and comfortable plantar pressure sensors. Herein, a strategy for preparing high compression strength and resilience conductive iongels has been proposed by implanting physically entangled polymer chains with covalently cross-linked networks. The resulting iongels have excellent mechanical properties including nice compliance (young's modulus < 300 kPa), high compression strength (>10 MPa at a strain of 90 %), and good resilience (self-recovery within seconds). And capacitive pressure sensor composed by them possesses excellent sensitivity, good linear response even under very small stress (∼kPa), and long-term durability (cycles > 100,000) under high-stress conditions (133 kPa). Then, capacitive pressure sensor arrays have been prepared for high-precision detection of plantar pressure spatial distribution, which also exhibit excellent sensing performances and long-term stability. Further, an extremely sensitive and fast response plantar pressure monitoring system has been designed for monitoring plantar pressure of foot at different postures including upright, forward and backward. The system achieves real-time tracking and monitoring of changes of plantar pressure during different static and dynamic posture processes. And the characteristics of plantar pressure information can be digitally and photography displayed. Finally, we propose an intelligent framework for real-time detection of plantar pressure by combining electronic insoles with data analysis system, which presents excellent applications in sport trainings and safety precautions.


Assuntos
Pressão , Humanos , Condutividade Elétrica , Pé/fisiologia , Monitorização Fisiológica/instrumentação , Marcha/fisiologia , Propriedades de Superfície , Dispositivos Eletrônicos Vestíveis
5.
J Sports Sci ; 42(6): 483-489, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38594899

RESUMO

A large proportion of netball players suffer foot-related problems and pain and are dissatisfied with current netball-specific footwear. To improve the fit and functionality of netball-specific shoes, we must understand the shape of these players' feet and determine whether any sex differences exist. Five hundred and two representative-level netball players (n = 251 male; n = 251 female) had their feet three-dimensionally scanned. We then used a validated MATLAB code to automatically extract 10 measurements to characterise each participant's foot shape. Differences between men and women for the absolute values and those normalised to foot length and stature were identified using independent samples t-tests with a Bonferroni adjusted alpha level. The size and shape of male netball players' feet differed significantly from their female counterparts. Males had significantly larger absolute and normalised foot measurements than females, notably at the ball of the foot, heel and instep (p < 0.001). Netball shoe manufacturers should develop unique lasts for each sex and foot size and should offer a more extensive range of shoe lengths and widths to netball players. Such considerations will help optimise shoe fit and comfort and, in turn, reduce foot-related problems and pain associated with ill-fitting footwear.


Assuntos
Desenho de Equipamento , , Sapatos , Humanos , Feminino , Masculino , Pé/anatomia & histologia , Pé/fisiologia , Adulto Jovem , Fatores Sexuais , Adulto , Adolescente , Equipamentos Esportivos , Imageamento Tridimensional , Basquetebol/fisiologia
6.
Sci Rep ; 14(1): 9125, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643231

RESUMO

This study investigates the relationship between ankle and toe strength and functional stability in young adults, with a sample comprising sixteen females and fourteen males. The research employed force platform data to determine the center of foot pressure (COP) and calculated the forward functional stability index (FFSI) through foot anthropometric measurements. Strength measurements of toe and ankle muscles, during maximal isometric flexion and extension, were conducted using force transducers. Notable positive correlations were found between toe flexor strength and FFSI (left flexor: r = 0.4, right flexor: r = 0.38, p < 0.05), not influenced by foot anthropometry. Contrarily, no significant correlation was observed between ankle muscle strength and FFSI, despite a positive correlation with the COP range. The moderate correlation coefficients suggest that while toe flexor strength is a contributing factor to functional stability, it does not solely determine functional stability. These findings highlight the critical role of muscle strength in maintaining functional stability, particularly during forward movements and emphasize the utility of FFSI alongside traditional COP measures in balance assessment. It is recommended to employ a multifaceted approach is required in balance training programs.


Assuntos
Tornozelo , Dedos do Pé , Masculino , Feminino , Adulto Jovem , Humanos , Dedos do Pé/fisiologia , Pé/fisiologia , Articulação do Tornozelo/fisiologia , Músculo Esquelético/fisiologia , Força Muscular/fisiologia
7.
J Neuroeng Rehabil ; 21(1): 65, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678291

RESUMO

BACKGROUND: Sensory reafferents are crucial to correct our posture and movements, both reflexively and in a cognitively driven manner. They are also integral to developing and maintaining a sense of agency for our actions. In cases of compromised reafferents, such as for persons with amputated or congenitally missing limbs, or diseases of the peripheral and central nervous systems, augmented sensory feedback therefore has the potential for a strong, neurorehabilitative impact. We here developed an untethered vibrotactile garment that provides walking-related sensory feedback remapped non-invasively to the wearer's back. Using the so-called FeetBack system, we investigated if healthy individuals perceive synchronous remapped feedback as corresponding to their own movement (motor awareness) and how temporal delays in tactile locomotor feedback affect both motor awareness and walking characteristics (adaptation). METHODS: We designed the system to remap somatosensory information from the foot-soles of healthy participants (N = 29), using vibrotactile apparent movement, to two linear arrays of vibrators mounted ipsilaterally on the back. This mimics the translation of the centre-of-mass over each foot during stance-phase. The intervention included trials with real-time or delayed feedback, resulting in a total of 120 trials and approximately 750 step-cycles, i.e. 1500 steps, per participant. Based on previous work, experimental delays ranged from 0ms to 1500ms to include up to a full step-cycle (baseline stride-time: µ = 1144 ± 9ms, range 986-1379ms). After each trial participants were asked to report their motor awareness. RESULTS: Participants reported high correspondence between their movement and the remapped feedback for real-time trials (85 ± 3%, µ ± σ), and lowest correspondence for trials with left-right reversed feedback (22 ± 6% at 600ms delay). Participants further reported high correspondence of trials delayed by a full gait-cycle (78 ± 4% at 1200ms delay), such that the modulation of motor awareness is best expressed as a sinusoidal relationship reflecting the phase-shifts between actual and remapped tactile feedback (cos model: 38% reduction of residual sum of squares (RSS) compared to linear fit, p < 0.001). The temporal delay systematically but only moderately modulated participant stride-time in a sinusoidal fashion (3% reduction of RSS compared a linear fit, p < 0.01). CONCLUSIONS: We here demonstrate that lateralized, remapped haptic feedback modulates motor awareness in a systematic, gait-cycle dependent manner. Based on this approach, the FeetBack system was used to provide augmented sensory information pertinent to the user's on-going movement such that they reported high motor awareness for (re)synchronized feedback of their movements. While motor adaptation was limited in the current cohort of healthy participants, the next step will be to evaluate if individuals with a compromised peripheral nervous system, as well as those with conditions of the central nervous system such as Parkinson's Disease, may benefit from the FeetBack system, both for maintaining a sense of agency over their movements as well as for systematic gait-adaptation in response to the remapped, self-paced, rhythmic feedback.


Assuntos
Retroalimentação Sensorial , , Percepção do Tato , Humanos , Masculino , Feminino , Adulto , Retroalimentação Sensorial/fisiologia , Pé/fisiologia , Percepção do Tato/fisiologia , Adulto Jovem , Caminhada/fisiologia , Vibração , Tato/fisiologia
8.
Medicina (Kaunas) ; 60(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674181

RESUMO

Background and Objectives: This study aims to identify the precise anatomical location and therapeutic mechanisms of the KI1 acupoint (Yongquan) in relation to foot muscles and nerves, known for treating neurological disorders and pain. Materials and Methods: Dissection of six cadavers at Chungnam National University College of Medicine examined KI1's relation to the foot's four-layer structure. Results: The KI1 acupoint was located in the superficial and deep layers of the plantar foot, adjacent to significant nerves like the medial and lateral plantar nerves. Differences in the acupoint's exact location between genders were noted, reflecting variances in foot morphology. KI1 acupuncture was found to stimulate the muscle spindles and nerve fibers essential for balance and bipedal locomotion. This stimulation may enhance sensory feedback, potentially improving cognitive functions and balance control. Conclusions: This anatomical insight into KI1 acupuncture underpins its potential in neurological therapies and pain management.


Assuntos
Pontos de Acupuntura , , Humanos , Masculino , Feminino , Pé/fisiologia , Pé/inervação , Pé/anatomia & histologia , Cadáver , Terapia por Acupuntura/métodos , Nervo Tibial/fisiologia , Nervo Tibial/anatomia & histologia , Idoso
9.
Biol Cybern ; 118(1-2): 111-126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38641732

RESUMO

This study investigates local stability of a four-link limit cycle walking biped with flat feet and compliant ankle joints. Local stability represents the behavior along the solution trajectory between Poincare sections, which can provide detailed information about the evolution of disturbances. The effects of ankle stiffness and foot structure on local stability are studied. In addition, we apply a control strategy based on local stability analysis to the limit cycle walker. Control is applied only in the phases with poor local stability. Simulation results show that the energy consumption is reduced without sacrificing disturbance rejection ability. This study may be helpful in motion control of limit cycle bipedal walking robots with flat feet and ankle stiffness and understanding of human walking principles.


Assuntos
, Caminhada , Humanos , Caminhada/fisiologia , Pé/fisiologia , Fenômenos Biomecânicos/fisiologia , Articulação do Tornozelo/fisiologia , Simulação por Computador , Robótica , Modelos Biológicos , Marcha/fisiologia
10.
J Sports Sci ; 42(5): 404-414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38602304

RESUMO

The purpose was to compare two non-laboratory based running retraining programs on lower limb and trunk kinematics in recreational runners. Seventy recreational runners (30 ± 7.3 years old, 40% female) were randomised to a barefoot running group (BAR), a group wearing a digital metronome with their basal cadence increased by 10% (CAD), and a control group (CON). BAR and CAD groups included intervals from 15 to 40 min over 10 weeks and 3 days/week. 3D sagittal kinematics of the ankle, knee, hip, pelvis, and trunk were measured before and after the retraining program, at comfortable and high speeds. A 3 × 2 mixed ANOVA revealed that BAR and CAD groups increased knee and hip flexion at footstrike, increased peak hip flexion during stance and flight phase, decreased peak hip extension during flight phase, and increased anterior pelvic tilt at both speeds after retraining. In addition, BAR increased ankle plantar flexion at footstrike and increased anterior trunk tilt. Both retraining programs demonstrated significant moderate to large effect size changes in parameters that could reduce the mechanical risks of injury associated with excessive knee stress, which is of interest to coaches, runners and those prescribing rehabilitation and injury prevention programs.


Assuntos
Extremidade Inferior , Pelve , Corrida , Tronco , Humanos , Corrida/fisiologia , Fenômenos Biomecânicos , Feminino , Masculino , Tronco/fisiologia , Adulto , Extremidade Inferior/fisiologia , Pelve/fisiologia , Pé/fisiologia , Adulto Jovem , Joelho/fisiologia , Tornozelo/fisiologia , Quadril/fisiologia , Marcha/fisiologia
11.
J Neuroeng Rehabil ; 21(1): 67, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689255

RESUMO

BACKGROUND: Foot and ankle unloading is essential in various clinical contexts, including ulcers, tendon ruptures, and fractures. Choosing the right assistive device is crucial for functionality and recovery. Yet, research on the impact of devices beyond crutches, particularly ankle-foot orthoses (AFOs) designed to unload the ankle and foot, is limited. This study investigates the effects of three types of devices-forearm crutches, knee crutch, and AFO-on biomechanical, metabolic, and subjective parameters during walking with unilateral ankle-foot unloading. METHODS: Twenty healthy participants walked at a self-selected speed in four conditions: unassisted able-bodied gait, and using three unloading devices, namely forearm crutches, iWalk knee crutch, and ZeroG AFO. Comprehensive measurements, including motion capture, force plates, and metabolic system, were used to assess various spatiotemporal, kinematic, kinetic, and metabolic parameters. Additionally, participants provided subjective feedback through questionnaires. The conditions were compared using a within-subject crossover study design with repeated measures ANOVA. RESULTS: Significant differences were found between the three devices and able-bodied gait. Among the devices, ZeroG exhibited significantly faster walking speed and lower metabolic cost. For the weight-bearing leg, ZeroG exhibited the shortest stance phase, lowest braking forces, and hip and knee angles most similar to normal gait. However, ankle plantarflexion after push-off using ZeroG was most different from normal gait. IWalk and crutches caused significantly larger center-of-mass mediolateral and vertical fluctuations, respectively. Participants rated the ZeroG as the most stable, but more participants complained it caused excessive pressure and pain. Crutches were rated with the highest perceived exertion and lowest comfort, whereas no significant differences between ZeroG and iWalk were found for these parameters. CONCLUSIONS: Significant differences among the devices were identified across all measurements, aligning with previous studies for crutches and iWalk. ZeroG demonstrated favorable performance in most aspects, highlighting the potential of AFOs in enhancing gait rehabilitation when unloading is necessary. However, poor comfort and atypical sound-side ankle kinematics were evident with ZeroG. These findings can assist clinicians in making educated decisions about prescribing ankle-foot unloading devices and guide the design of improved devices that overcome the limitations of existing solutions.


Assuntos
Tornozelo , , Caminhada , Humanos , Fenômenos Biomecânicos , Masculino , Caminhada/fisiologia , Feminino , Adulto , Tornozelo/fisiologia , Pé/fisiologia , Órtoses do Pé , Tecnologia Assistiva , Adulto Jovem , Muletas , Estudos Cross-Over , Marcha/fisiologia
12.
Arch Orthop Trauma Surg ; 144(5): 1955-1967, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554203

RESUMO

INTRODUCTION: Progressive collapsing foot deformity (PCFD), formally known as "adult-acquired flatfoot deformity" (AAFFD), is a complex foot deformity consisting of multiple components. If surgery is required, joint-preserving procedures, such as a medial displacement calcaneal osteotomy (MDCO), are frequently performed. The aim of this systematic review is to provide a summary of the evidence on the impact of MDCO on foot biomechanics. MATERIALS AND METHODS: A systematic literature search across two major sources (PubMed and Scopus) without time limitation was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria. Only original research studies reporting on biomechanical changes following a MDCO were included. Exclusion criteria consisted of review articles, case studies, and studies not written in English. 27 studies were included and the methodologic quality graded according to the QUACS scale and the modified Coleman score. RESULTS: The 27 included studies consisted of 18 cadaveric, 7 studies based on biomechanical models, and 2 clinical studies. The impact of MDCO on the following five major parameters were assessed: plantar fascia (n = 6), medial longitudinal arch (n = 9), hind- and midfoot joint pressures (n = 10), Achilles tendon (n = 5), and gait pattern parameters (n = 3). The quality of the studies was moderate to good with a pooled mean QUACS score of 65% (range 46-92%) for in-vitro and a pooled mean Coleman score of 58 (range 56-65) points for clinical studies. CONCLUSION: A thorough knowledge of how MDCO impacts foot function is key in properly understanding the postoperative effects of this commonly performed procedure. According to the evidence, MDCO impacts the function of the plantar fascia and Achilles tendon, the integrity of the medial longitudinal arch, hind- and midfoot joint pressures, and consequently specific gait pattern parameters.


Assuntos
Calcâneo , Pé Chato , Osteotomia , Humanos , Calcâneo/cirurgia , Osteotomia/métodos , Fenômenos Biomecânicos , Pé Chato/cirurgia , Pé Chato/fisiopatologia , Marcha/fisiologia , Deformidades Adquiridas do Pé/cirurgia , Deformidades Adquiridas do Pé/fisiopatologia , Deformidades Adquiridas do Pé/etiologia , Pé/cirurgia , Pé/fisiopatologia , Pé/fisiologia
13.
Exp Physiol ; 109(5): 754-765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488681

RESUMO

This study investigates the effects of varying loading conditions on excitability in neural pathways and gait dynamics. We focussed on evaluating the magnitude of the Hoffman reflex (H-reflex), a neurophysiological measure representing the capability to activate motor neurons and the timing and placement of the foot during walking. We hypothesized that weight manipulation would alter H-reflex magnitude, footfall and lower body kinematics. Twenty healthy participants were recruited and subjected to various weight-loading conditions. The H-reflex, evoked by stimulating the tibial nerve, was assessed from the dominant leg during walking. Gait was evaluated under five conditions: body weight, 20% and 40% additional body weight, and 20% and 40% reduced body weight (via a harness). Participants walked barefoot on a treadmill under each condition, and the timing of electrical stimulation was set during the stance phase shortly after the heel strike. Results show that different weight-loading conditions significantly impact the timing and placement of the foot and gait stability. Weight reduction led to a 25% decrease in double limb support time and an 11% narrowing of step width, while weight addition resulted in an increase of 9% in step width compared to body weight condition. Furthermore, swing time variability was higher for both the extreme weight conditions, while the H-reflex reduced to about 45% between the extreme conditions. Finally, the H-reflex showed significant main effects on variability of both stance and swing phases, indicating that muscle-motor excitability might serve as feedback for enhanced regulation of gait dynamics under challenging conditions.


Assuntos
Marcha , Reflexo H , Caminhada , Suporte de Carga , Humanos , Marcha/fisiologia , Reflexo H/fisiologia , Masculino , Adulto , Feminino , Suporte de Carga/fisiologia , Fenômenos Biomecânicos/fisiologia , Adulto Jovem , Caminhada/fisiologia , Estimulação Elétrica/métodos , Músculo Esquelético/fisiologia , Nervo Tibial/fisiologia , Eletromiografia , Pé/fisiologia , Adaptação Fisiológica/fisiologia , Neurônios Motores/fisiologia , Peso Corporal/fisiologia
14.
Ann Biomed Eng ; 52(6): 1719-1731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494465

RESUMO

The role of the many small foot articulations and plantar tissues in gait is not well understood. While kinematic multi-segment foot models have increased our knowledge of foot segmental motions, the integration of kinetics with these models could further advance our understanding of foot mechanics and energetics. However, capturing and effectively utilizing segmental ground reaction forces remains challenging. The purposes of this study were to (1) develop methodology to integrate plantar pressures and shear stresses with a multi-segment foot model, and (2) generate and concisely display key normative data from this combined system. Twenty-six young healthy adults walked barefoot (1.3 m/s) across a pressure/shear sensor with markers matching a published 4-segment foot model. A novel anatomical/geometric template-based masking method was developed that successfully separated regions aligned with model segmentation. Directional shear force plots were created to summarize complex plantar shear distributions, showing opposing shear forces both between and within segments. Segment centers of pressure (CoPs) were shown to be primarily stationary within each segment, suggesting that forward progression in healthy gait arises primarily from redistributing weight across relatively fixed contact points as opposed to CoP movement within a segment. Inverse dynamics-based normative foot joint moments and power were presented in the context of these CoPs to aid in interpretation of tissue stresses. Overall, this work represents a successful integration of motion capture with direct plantar pressure and shear measurements for multi-segment foot kinetics. The presented tools are versatile enough to be used with other models and contexts, while the presented normative database may be useful as a baseline comparison for clinical work in gait energetics and efficiency, balance, and motor control. We hope that this work will aid in the advancement and availability of kinetic MSF modeling, increase our knowledge of foot mechanics, and eventually lead to improved clinical diagnosis, rehabilitation, and treatment.


Assuntos
, Modelos Biológicos , Humanos , Pé/fisiologia , Adulto , Masculino , Feminino , Marcha/fisiologia , Pressão , Estresse Mecânico , Fenômenos Biomecânicos , Cinética , Articulações do Pé/fisiologia
15.
J Sports Sci ; 42(3): 263-269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38484285

RESUMO

Horizontal deceleration technique is an underpinning factor to musculoskeletal injury risk and performance in multidirectional sport. This study primarily assessed within- and between-session reliability of biomechanical and performance-based aspects of a horizontal deceleration technique and secondarily investigated the effects of limb dominance on reliability. Fifteen participants completed four horizontal decelerations on each leg during test and retest sessions. A three-dimensional motion analysis system was used to collect kinetic and kinematic data. Completion time, ground contact time, rate of horizontal deceleration, minimum centre of mass height, peak eccentric force, impulse ratio, touchdown distance, sagittal plane foot and knee angles at initial contact, maximum sagittal plane thorax angle, and maximum knee flexion moment were assessed. Coefficients of variation (COV) and intraclass correlation coefficients (ICC) were used to assess within- and between-session reliability, respectively. Seven variables showed "great" within-session reliability bilaterally (COV ≤9.13%). ICC scores were 'excellent' (≥0.91; n = 4), or 'good' (0.76-0.89; n = 7), bilaterally. Limb dominance affected five variables; three were more reliable for the dominant leg. This horizontal deceleration task was reliable for most variables, with little effect of limb dominance on reliability. This deceleration task may be reliably used to assess and track changes in deceleration technique in healthy adults.


Assuntos
Desaceleração , Humanos , Fenômenos Biomecânicos , Masculino , Reprodutibilidade dos Testes , Feminino , Adulto Jovem , Adulto , Estudos de Tempo e Movimento , Perna (Membro)/fisiologia , Joelho/fisiologia , Pé/fisiologia , Análise e Desempenho de Tarefas
16.
J Biomech ; 166: 112043, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484654

RESUMO

Many individuals who experience a stroke exhibit reduced modulation of their mediolateral foot placement, an important gait stabilization strategy. One factor that may contribute to this deficit is altered somatosensory processing, which can be probed by applying vibration to the involved muscles (e.g., the hip abductors). The purpose of this study was to investigate whether appropriately controlled hip abductor vibration can increase foot placement modulation among people with chronic stroke. 40 people with chronic stroke performed a series of treadmill walking trials without vibration and with vibration of either the hip abductors or lateral trunk (a control condition) that scaled with their real-time mediolateral motion. To assess participants' vibration sensitivity, we also measured vibration detection threshold and lateral sway evoked by abductor vibration during quiet standing. As a group, foot placement modulation increased significantly with either hip or trunk vibration, compared to without vibration. However, these changes were quite variable across participants, and were not predicted by either vibration detection threshold or the lateral sway evoked by hip vibration during standing. Overall, we found that somatosensory stimulation had small, positive effects on post-stroke foot placement modulation. Unexpectedly, these effects were observed with both hip abductor and lateral trunk vibration, perhaps indicating that the trunk can also provide useful somatosensory feedback during walking. Future work is needed to determine whether repeated application of such somatosensory stimulation can produce sustained effects on this important gait stabilization strategy.


Assuntos
, Acidente Vascular Cerebral , Humanos , Pé/fisiologia , Extremidade Inferior , Marcha/fisiologia , Caminhada/fisiologia , Equilíbrio Postural/fisiologia
17.
Med Eng Phys ; 125: 104115, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38508791

RESUMO

Frailty in older adults often leads to foot issues, increasing fall-related fracture risk. Mechanoreceptors, the pressure receptors in the foot sole, are pivotal for postural control. Foot problems can impair mechanoreceptor function, compromising balance. This study aimed to examine the effect of foot care on postural control in frail older adults. Forty-eight participants underwent a five-month monthly foot care intervention. Measurements were taken before and after this intervention. Participants stood for 45 s in a static, open-eyed position on a stabilometer. Center-of-pressure (CoP) analysis included total trajectory length, integrated triangle area, rectangular area, and range of motion in anterior-posterior and medio-lateral directions. Results indicated that foot care significantly increased toe ground contact area by 1.3 times and improved anterior-posterior motion control during static standing. Enhanced postural control resulted from improved skin condition due to foot care that intensified mechanoreceptor signal input and improved postural control output. These findings underscore the potential for reducing fracture risks in older adults through proactive foot care. The study highlights the vital role of foot care in enhancing postural control, with broader implications for aging population well-being and safety.


Assuntos
Idoso Fragilizado , Equilíbrio Postural , Humanos , Idoso , Equilíbrio Postural/fisiologia , Pé/fisiologia , Envelhecimento/fisiologia , Amplitude de Movimento Articular
18.
Sci Rep ; 14(1): 7525, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553519

RESUMO

The paper deals with the torques of external muscles acting on the upper ankle joint under weight-bearing conditions and their importance in diagnosing and treating the human foot. Experimental data were collected and calculations were performed. Based on the experiments with the biomechanical model of the foot and upper ankle joint, it was shown how the changes in the force arms of the external muscles of the foot under weight-bearing conditions, change the torque. The real values of muscle forces and torques of the external muscles of the foot were calculated. Taking into account the distance of the lines of muscle action from the axis of rotation of the upper ankle joint the rotational force of the muscles was calculated. The influence of changing the force arm on the rotational efficiency of the muscle balancing the moment of gravity was shown. Knowledge of muscle torque under weight-bearing conditions is crucial for correctly assessing foot biomechanics. It has been shown that torque (gravitational and muscular), not pure force, is crucial when assessing the rotational capacity of the analyzed joint. A change in the approach to diagnostics and treating paresis or weakness of extrinsic foot muscles was proposed through the manipulation of the distance of their action line from the axis of joint rotation.


Assuntos
Articulação do Tornozelo , Ossos do Tarso , Humanos , Articulação do Tornozelo/cirurgia , Articulação do Tornozelo/fisiologia , Torque , Músculo Esquelético/fisiologia , Pé/fisiologia , Fenômenos Biomecânicos
19.
J Bone Joint Surg Am ; 106(9): 801-808, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346100

RESUMO

BACKGROUND: Physical skeletal loading can affect the bone mineral density (BMD). This study investigated the association between BMD and dynamic foot pressure during gait. METHODS: A total of 104 patients (mean age, 62.6 ± 12.4 years; 23 male and 81 female) who underwent dual x-ray absorptiometry and pedobarography were included. BMD values of the lumbar spine, femoral neck, and total femur were assessed. The mean and maximum pressures were measured at the hallux, lesser toes, 1st metatarsal head, 2nd and 3rd metatarsal heads, 4th and 5th metatarsal heads, midfoot, medial heel, and lateral heel. Multivariable regression analysis was performed to identify factors significantly associated with BMD. RESULTS: The lumbar spine BMD was significantly associated with the mean pressure at the 4th and 5th metatarsal heads (p = 0.041, adjusted R 2 of model = 0.081). The femoral neck BMD was significantly associated with the maximum pressure at the 2nd and 3rd metatarsal heads (p = 0.002, adjusted R 2 = 0.213). The total femoral BMD also showed a significant association with the maximum pressure at the 2nd and 3rd metatarsal heads (p = 0.003, adjusted R 2 = 0.360). CONCLUSIONS: Foot plantar pressure during gait was significantly associated with BMD, and could potentially be used to predict the presence of osteoporosis. LEVEL OF EVIDENCE: Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Absorciometria de Fóton , Densidade Óssea , , Pressão , Caminhada , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Densidade Óssea/fisiologia , Idoso , Pé/fisiologia , Caminhada/fisiologia , Osteoporose/fisiopatologia , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/fisiologia , Vértebras Lombares , Marcha/fisiologia
20.
J Strength Cond Res ; 38(5): 985-990, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349337

RESUMO

ABSTRACT: Tanji, F, Ohnuma, H, Ando, R, Yamanaka, R, Ikeda, T, and Suzuki, Y. Longer ground contact time is related to a superior running economy in highly trained distance runners. J Strength Cond Res 38(5): 985-990, 2024-Running economy is a key component of distance running performance and is associated with gait parameters. However, there is no consensus of the link between the running economy (RE), ground contact time, and footstrike patterns. Thus, this study aimed to clarify the relationship between RE, ground contact time, and thigh muscle cross-sectional area (CSA) in highly trained distance runners and to compare these parameters between 2 habitual footstrike patterns (midfoot vs. rearfoot). Seventeen male distance runners ran on a treadmill to measure RE and gait parameters. We collected the CSAs of the right thigh muscle using a magnetic resonance imaging scanner. The RE had a significant negative relationship with distance running performance ( r = -0.50) and ground contact time ( r = -0.51). The ground contact time had a significant negative relationship with the normalized CSAs of the vastus lateralis muscle ( r = -0.60) and hamstrings ( r = -0.54). No significant differences were found in RE, ground contact time, or normalized CSAs of muscles between midfoot ( n = 10) and rearfoot ( n = 7) strikers. These results suggest that large CSAs of knee extensor muscles results in short ground contact time and worse RE. The effects of the footstrike pattern on the RE appear insignificant, and the preferred footstrike pattern can be recommended for running in highly trained runners.


Assuntos
Marcha , Corrida , Humanos , Corrida/fisiologia , Masculino , Marcha/fisiologia , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/anatomia & histologia , Desempenho Atlético/fisiologia , Músculos Isquiossurais/fisiologia , Músculos Isquiossurais/diagnóstico por imagem , Coxa da Perna/fisiologia , Coxa da Perna/anatomia & histologia , Pé/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA